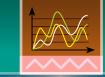

Belimo Pressure Independent Control Valve Range

- Energy Valve


Technical Databook

Belimo Asia Pacific

Energy Valve

Energy Valve – measures the load/coil supply and return temperature and calculates the power or energy consumed, and communicates to Higher Building Management levels

Product overview

Polimo Enorgy Volyo M	Model No.	Frequency	DN	Torque	Nomin	al Flow	Adjustable max.
Belimo Energy Valve™	woder no.	[Hz]	[mm]	[Nm]	[l/s]	[l/min]	flow rate [m³/h]
	EV015R+BAC	50/60	15	5Nm	0.35	21	0.381.26
	EV020R+BAC	50/60	20	5Nm	0.65	39	0.72.34
	EV025R+BAC	50/60	25	5Nm	1.15	69	1.244.14
	EV032R+BAC	50/60	32	10Nm	1.8	108	1.946.48
§ •••••	EV040R+BAC	50/60	40	10Nm	2.5	150	2.79
	EV050R+BAC	50/60	50	20Nm	4.8	288	5.1817.28
	EV050R+BAC-N	50/60	50	20Nm	6.3	378	6.822.68
	P6065W800EV-BAC	50	65	20Nm	8	480	8.6428.8
	P6080W1100EV-BAC	50	80	20Nm	11	660	11.8839.6
	P6100W2000EV-BAC	50	100	40Nm	20	1200	21.672
	P6125W3100EV-BAC	50	125	40Nm	31	1860	33.48111.6
NOT THE	P6150W4500EV-BAC	50	150	40Nm	45	2700	48.6162
	P6065W806EV-BAC	60	65	20Nm	8	480	8.6428.8
	P6080W1106EV-BAC	60	80	20Nm	11	660	11.8839.6
	P6100W2006EV-BAC	60	100	40Nm	20	1200	21.672
	P6125W3106EV-BAC	60	125	40Nm	31	1860	33.48111.6
	P6150W4506EV-BAC	60	150	40Nm	45	2700	48.6162

Note:

• The Energy Valve (EV) must be ordered together with the Rotary Actuator.

• Ordering sample:

No part on Energy Valve can be ordered as a standard product.

Content	
Product Overview	4
EV	
EVR+BAC	5
P6WEV-BAC	7
Technical Data	9
Mounting Instructions	18

Technical data sheet

EV..R+BAC

MP27BUS

Characterised control valve (CCV) with sensor-operated flow rate or power control, power and energy-monitoring function, 2-way, internal thread

- Nominal voltage AC/DC 24V
- Control modulating
- For modulating water-side control of air handling systems and heating systems
- Ethernet 10/100 Mbit/s, TCP/IP, integrated web server
- Communication via BACnet IP, BACnet MS/TP, Belimo MP-Bus or conventional control

Type overview

Model No.	Frequency [Hz]	[.] [l∕s]	ḋnom [l∕min]	kvs theor.* [m³/h]	DN [mm]	Rp ["]	ps** [kPa]	n(gl) []
EV015R+BAC	50/60	0.35	21	2.9	15	1/2	1600	3.2
EV020R+BAC	50/60	0.65	39	4.9	20	3/4	1600	3.2
EV025R+BAC	50/60	1.15	69	8.6	25	1	1600	3.2
EV032R+BAC	50/60	1.8	108	14.2	32	1 1/4	1600	3.2
EV040R+BAC	50/60	2.5	150	21.3	40	1 1/2	1600	3.2
EV050R+BAC	50/60	4.8	288	32.0	50	2	1600	3.2
EV050R+BAC-N	50/60	6.3	378	32.0	50	2	1600	3.2

* : Theoretical kvs value for pressure drop calculation

** : Maximum allowable pressure

Technical data

Electrical data	Nominal voltage	AC/DC 24V	
	Nominal voltage frequency	50/60Hz	
	Nominal voltage range	AC 19.228.8V / DC 21.628.8V	
	Power consumption in operation	5W	
	Power consumption in rest position	3.9W	
	Power consumption for wire sizing	7.5VA	
	Connection supply / control	Cable 1m, 6 x 0.75mm ²	
	Connection control Ethernet	RJ45 socket	
	Parallel operation	Yes (note the performance data)	
Flow measurement	Measuring principle	Ultrasonic volumetric flow measurement	
	Measuring accuracy	±2%	
		(of 25100% Vnom at 20°C, Glycol 0% vol.)	
	Min. flow measurement	0.5% of Vnom	
Functional data	Torque motor	5Nm (DN 1525) / 10Nm (DN 32 - 40) / 20Nm (DN 50)	
	Communication protocol	BACnet IP, BACnet MS/TP	
	Communication protocol	TCP/IP	
		Belimo MP-Bus	
	Positioning signal Y	DC 010V	
	Operating range Y	DC 210V	
	Operating range Y variable	DC 0.510V	
	Position feedback U	DC 210V	
	Position feedback U variable	DC 010V	
		DC 0.510V	
	Sound power level motor max.	45dB(A)	
	Adjustable flow rate Vmax	30100% of Vnom	
	Control accuracy	±5%	
		(of 25100% Vnom at 20°C, Glycol 0% vol.)	
	Configuration	Web browser via TCP/IP	
		Portable handheld ZTH AP via MP-Bus	
	Media	Cold and hot water, water with glycol up to	
		max. 60% vol.	
	Media temperature	-10°C120°C	

EV..R+BAC

Characterised control valve (CCV) with sensor-operated flow rate or power control, power and energy-monitoring function, 2-way, internal thread

Technical data				
Functional data	Pressure rating	PN16		
	Closing pressure ∆ps	1380kPa		
	Differential pressure ∆pmax	350kPa		
	Flow characteristic	Equal percentage (VDI/VDE 2178), linear		
	Leakage rate	Air bubble-tight (Leakage rate A, EN12266-1)		
	Pipe connections	Internal thread (ISO 7-1 / EN10226-1)		
	Installation position	Upright to horizontal (in relation to the stem)		
	Maintenance	Maintenance-free		
	Manual override	Gear disengagement with push-button, can be locked		
	Running time	90s		
Temperature measurement	Measuring accuracy of the absolute	PT1000 EN60751 Class B		
	temperature	(For 1/3 DIN PT1000 EN60751 Class AA, refer		
		to accessories ZM-T30-AA)		
	Measuring accuracy of Delta T	±0.18°C @ ∆T = 10°C		
	Resolution	0.1°C		
Safety	Protection class IEC/EN	III Safety extra-low voltage		
	Degree of protection IEC/EN	IP54 (with protective cap for RJ45 socket)		
	EMC	CE according to 2004/108/EC		
	Mode of operation	Туре 1		
	Rated impulse voltage supply / control	0.8kV		
	Control pollution degree	3		
	Ambient temperature	-3050°C		
	Non-operating temperature	-4080°C		
	Ambient humidity	95% r.h., non-condensing		
Materials	Housing	Brass body, nickel-plated		
	Measuring pipe	Brass body, nickel-plated		
	Ball	Stainless steel AISI 316		
	Stem	Stainless steel AISI 304		
	Stem seal	O-ring EPDM		
	Immersion well	Brass		
	T-Piece	Brass body, nickel-plated		

Safety notes

- This device has been designed for use in stationary heating, ventilation and air conditioning systems and is not allowed to be used outside the specified field of application, especially in aircraft or in any other airborne means of transport.
- Only authorised specialists may carry out installation. All applicable legal or institutional installation regulations must be complied with during installation.
- The connection between the control valve and the measuring tube should not be separated.
- The device contains electrical and electronic components and is not allowed to be disposed of as household refuse. All locally valid regulations and requirements must be observed.

Characterised control valve (CCV) with sensor-operated flow rate or power control, power and energy-monitoring function, 2-way, PN16 flange

- Nominal voltage AC/DC 24V
 Control modulation
- Control modulating
- For modulating water-side control of air handling systems and heating systems
- Ethernet 10/100 Mbit/s, TCP/IP, integrated web server
- Communication via BACnet IP, BACnet MS/TP, Belimo MP-Bus or conventional control

Type overview

BACnet

Model No.	Frequency [Hz]	ḋnom [l∕s]	∨nom [l/min]	kvs theor.* [m³/h]	DN [mm]	DN ["]	ps** [kPa]	n(gl) []
P6065W800EV-BAC	50	8	480	40	65	2 1/2	1600	3.2
P6080W1100EV-BAC	50	11	660	60	80	3	1600	3.2
P6100W2000EV-BAC	50	20	1200	100	100	4	1600	3.2
P6125W3100EV-BAC	50	31	1860	160	125	5	1600	3.2
P6150W4500EV-BAC	50	45	2700	240	150	6	1600	3.2
P6065W806EV-BAC	60	8	480	40	65	2 1/2	1600	3.2
P6080W1106EV-BAC	60	11	660	60	80	3	1600	3.2
P6100W2006EV-BAC	60	20	1200	100	100	4	1600	3.2
P6125W3106EV-BAC	60	31	1860	160	125	5	1600	3.2
P6150W4506EV-BAC	60	45	2700	240	150	6	1600	3.2

* : Theoretical kvs value for pressure drop calculation

** : Maximum allowable pressure

Technical data

Electrical data	Nominal voltage	AC/DC 24V
	Nominal voltage frequency	50/60Hz
	Nominal voltage range	AC 19.228.8V / DC 21.628.8V
	Power consumption in operation	10W
	Power consumption in rest position	8.5W
	Power consumption for wire sizing	14VA
	Connection supply / control	Cable 1m, 6 x 0.75mm ²
	Connection control Ethernet	RJ45 socket
	Parallel operation	Yes (note the performance data)
Flow measurement	Measuring principle	Magnetic inductive volumetric flow measurement
	Measuring accuracy	±2% (of 25100% V̀nom at 20°C, Glycol 0% vol.)
	Min. flow measurement	1.25% of Vnom
Functional data	Torque motor	20Nm (DN 6580) / 40 Nm (DN 100150)
	Communication protocol	BACnet IP, BACnet MS/TP
		TCP/IP
		Belimo MP-Bus
	Positioning signal Y	DC 010V
	Operating range Y	DC 210V
	Operating range Y variable	DC 0.510V
	Position feedback U	DC 210V
	Position feedback U variable	DC 010V
		DC 0.510V
	Sound power level motor max.	45dB(A)
	Adjustable flow rate Vmax	30100% of Vnom
	Control accuracy	±5%
		(of 25100% Vnom at 20°C, Glycol 0% vol.)
	Configuration	Web browser via TCP/IP
		Portable handheld ZTH AP via MP-Bus
	Media	Cold and hot water, water with glycol up to
		max. 60% vol.
	Media temperature	-5°C120°C

P6..W..EV-BAC

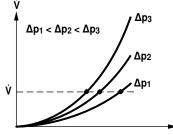
Characterised control valve (CCV) with sensor-operated flow rate or power control, power and energy-monitoring function, 2-way, PN16 flange

	hange			
Technical data				
Functional data	Pressure rating	PN16		
	Closing pressure ∆ps	690kPa		
	Differential pressure ∆pmax	340kPa		
	Flow characteristic	Equal percentage (VDI/VDE 2178), linear		
	Leakage rate	Air bubble-tight (Leakage rate A, EN12266-1)		
	Pipe connections	Flange (ISO 7005-2 / EN 1092-1)		
	Installation position	Upright to horizontal (in relation to the stem)		
	Maintenance	Maintenance-free		
	Manual override	Gear disengagement with push-button, can be locked		
	Running time	90s		
Temperature measurement	Measuring accuracy of the absolute	PT1000 EN60751 Class B		
	temperature	(For 1/3 DIN PT1000 EN60751 Class AA, refer		
		to accessories EV-RT-100-AA)		
	Measuring accuracy of Delta T	±0.18°C @ ∆T = 10°C		
	Resolution	0.1°C		
Safety	Protection class IEC/EN	III Safety extra-low voltage		
	Degree of protection IEC/EN	IP54 (with protective cap for RJ45 socket)		
	EMC	CE according to 2004/108/EC		
	Mode of operation	Туре 1		
	Rated impulse voltage supply / control	0.8kV		
	Control pollution degree	3		
	Ambient temperature	-1050°C		
	Non-operating temperature	-2080°C		
	Ambient humidity	95% r.h., non-condensing		
Materials	Housing	EN-JL1040 (GG25), with protective paint		
	Measuring pipe	EN-GJS-500-7U (GGG50 with protective paint)		
	Ball	Stainless steel AISI 316		
	Stem	Stainless steel AISI 304		
	Stem seal	EPDM Perox		
	Immersion well	Brass body, nickel-plated		

Safety notes

 This device has been designed for use in stationary heating, ventilation and air conditioning systems and is not allowed to be used outside the specified field of application, especially in aircraft or in any other airborne means of transport.

- Only authorised specialists may carry out installation. All applicable legal or institutional installation regulations must be complied with during installation.
- The connection between the control valve and the measuring tube should not be separated.
- The device contains electrical and electronic components and is not allowed to be disposed of as household refuse. All locally valid regulations and requirements must be observed.

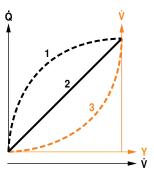


Product features

Mode of operation The actuator is comprised of four components: characterised control valve (CCV), measuring pipe with volumetric flow sensor, temperature sensors and the actuator itself. The adjusted maximum flow (Vmax) is assigned to the maximum positioning signal (typically 10V/100%). Alternatively, the positioning signal can be assigned to the valve opening angle or to the power required on the heat exchanger (see power control).

The actuator control can be either communicative or analogue. The medium is detected by the sensor in the measuring pipe and is applied as the flow value. The measured value is balanced with the setpoint. The actuator corrects the deviation by changing the valve position. The angle of rotation α varies according to the differential pressure through the final controlling element (see volumetric flow curves).

Flow rate curves



Flow characteristic of the characterised control valve

Heat exchanger transfer response

Depending on the construction, temperature spread, medium and hydraulic circuit, the power Q is not proportional to the volumetric flow of the water \dot{V} (curve 1). With the classical type of temperature control, an attempt is made to maintain the control signal Y proportional to the power Q (curve 2). This is achieved by means of an equal-percentage valve characteristic curve (curve 3).

α

Power control

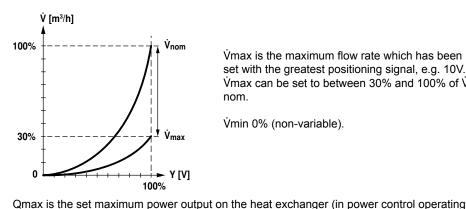
rol Alternatively, the positioning signal Y can be assigned to the output power required on the heat exchanger.

Depending on the water temperature and air conditions, the Energy Valve ensures the amount of water required \dot{V} to achieve the desired power.

Maximum controllable power on heat exchanger in power control mode:

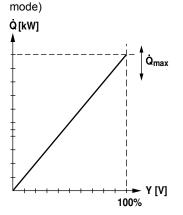
DN 15	30 kW	DN 65	700 kW
DN 20	60 kW	DN 80	1000 kW
DN 25	100 kW	DN 100	1700 kW
DN 32	160 kW	DN 125	2700 kW
DN 40	210 kW	DN 150	3800 kW
DN 50	410 kW		

Control characteristics


The specially configured control parameters in connection with the precise flow rate sensor ensure a stable quality of control. They are however not suitable for rapid control processes, i.e. for domestic water control.

Definition of flow rate

Vnom is the maximum possible flow.


Product features

Vmax is the maximum flow rate which has been set with the greatest positioning signal, e.g. 10V. Vmax can be set to between 30% and 100% of V nom.

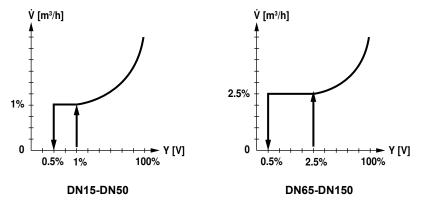
Vmin 0% (non-variable).

Performance definition

Creep flow suppression

Given the very low flow speed in the opening point, this can no longer be measured by the sensor within the required tolerance. This range is overridden electronically.

Opening valve


The valve remains closed until the volumetric flow required by the positioning signal Y corresponds to 0.5% of Vnom(DN15-DN50) / 1.25 of Vnom(DN65-DN150). The control along the valve characteristic curve is active after this value has been exceeded.

Closing valve (DN15-DN50)

The control along the valve characteristic curve is active up to the required flow rate of 1% of Vnom. Once the level falls below this value, the flow rate is maintained at 1% of Vnom. If the level falls below the flow rate of 0.5% of Vnom required by the reference variable Y, then the valve will close.

Closing valve (DN65-DN150)

The control along the valve characteristic curve is active up to the required flow rate of 2.5% of Vnom. Once the level falls below this value, the flow rate is maintained at 2.5% of Vnom. If the level falls below the flow rate of 0.5% of Vnom required by the reference variable Y, then the valve will close.

V3.2 03.2015 Subject to modification

Product features Communication The parameterisation can be carried out through the integrated web server (RJ45 connection to the web browser) or by communicative means. Additional information regarding the integrated web server can be found in the separate documentation. "Peer to Peer" connection http://belimo.local:8080 The Notebook must be set to "DHCP". Make sure that only one network connection is active. Standard IP address: http://192.168.0.10:8080 Static IP address Password (read-only): User name: guest Password: guest Positioning signal inversion This can be inverted in cases of control with an analogue positioning signal. The inversion causes the reversal of the standard behaviour, i.e. at a positioning signal of 0%, regulation is to Vmax or Qmax, and the valve is closed at a positioning signal of 100%. Via the integrated web server, the maximum flow rate (equivalent to 100% requirement) can Hydraulic balancing be adjusted directly on the device itself, simply and reliably, in a few steps. If the device is integrated in the management system, then the balancing can be handled directly by the management system. **Delta-T manager** If a heating or cooling register is operated with a differential temperature that is too low and thus with a flow rate that is too high, this will not result in an increased power output. Nevertheless, heating or cooling machines must provide the energy at a lower degree of effectiveness. Pumps circulate too much water and increase energy consumption unnecessarily. With the aid of the Energy Valve, it is simple to discover that operation is being carried out at a differential temperature that is too low, resulting in the inefficient use of energy. Necessary setting adjustments can now be carried out quickly and easily at any time. The integrated differential temperature control offers the user in addition the possibility of defining a low limit value. The Energy Valve limits the flow rate automatically to prevent the level from falling below this value. 3 Power output of the heating or cooling registers 1 Differential temperature between supply and return 4 Loss zone (heating or cooling register saturation) 3 ► V [m³/h] Adjustable minimum differential temperature 4 The integrated web server, BACnet IP, BACnet MS/TP or MP bus can be used for the Combination analogue - communicative communicative position feedback with conventional control by means of an analogue positioning signal.

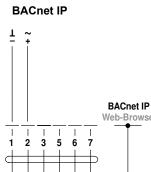
When the combination of positioning signal Y and communicative position feedback is used, it is imperative to ensure that the communicative path is used solely for data transfer from the Energy Valve to the higher-level management system. If values are transferred communicatively via bus to the Energy Valve, then the analogue control will be automatically deactivated.

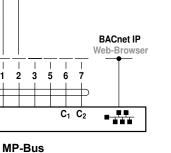
This deactivation can be reversed by disconnecting the Energy Valve from the power supply.

UL marked actuators is optional, please contact your local Sales Representative for details.

EV-RT-100-AA

Product features		
Power and energy monitoring function	The actuator is equipped with two temperature sensors. A sensor (T2) mu at the valve and the second sensor (T1) must be installed on-site on the of the water circulation. The two sensors are enclosed with the system alread sensors are used to record the medium temperature of the supply and retu- consumer (heat/cold register). As the water quantity is also known, thanks flow measurement integrated in the system, the power released from the of calculated. Furthermore, the heating/cooling energy is also determined au means of the evaluation of the power over time. The current data, e.g. temperatures, volumetric flow volumes, exchanger consumption, etc. can be recorded and accessed at any time by means of communication (BACnet or MP-Bus).	ther side of dy wired. The urn lines of the to the volumetric consumer can be tomatically by energy f web browsers or
Data recording	The recorded data (integrated data recording for 13 months) can be used optimisation of the overall system and for the determination of the perform consumer. Download csv files through web browser.	
Manual override	Manual override with push-button possible (the gear is disengaged for as is pressed or remains locked).	long as the button
High functional reliability	The actuator is overload protected, requires no limit switches and automa the end stop is reached.	tically stops when
Home position	The actuator moves to the home position when the supply voltage is switch time, i.e. at the time of commissioning or after pressing the "gear disengage The actuator then moves into the required position in order to ensure the by the positioning signal.	gement" key.
Accessories		
	Description	Туре
Service Tools	Service tool, for MF/MP/Modbus/LonWorks actuators and VAV controller	ZTH AP
	Remote temperature sensor pair 1/3m,	ZM-T30-AA


Electrical installation


\wedge	Notes	 Connection via safety isolating transformer. Parallel connection of other actuators possible. Observe the performance data.

Remote temperature sensor pair 1/10m,

to DN65-150, 1/3 DIN PT1000 EN60751 Class AA

Wiring diagrams

Cable colours:

1 = black

3 = white

6 = pink

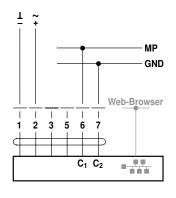
7 = grey

5 = orange

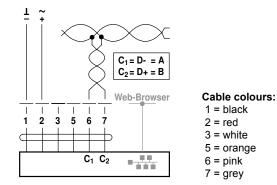
Cable colours:

1 = black

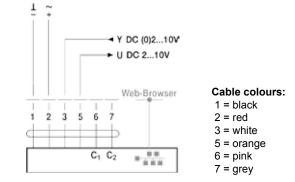
3 = white


6 = pink

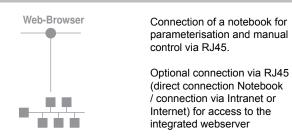
7 = grey


5 = orange

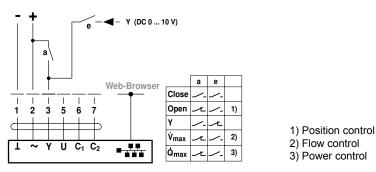
2 = red


2 = red

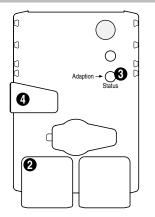
BACnet MS/TP



Conventional operation



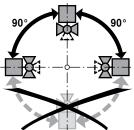
Electrical installation



Functions

Functions for actuators with specific parameters (Parametrisation with web server necessary) Override control and limiting with DC 24V with relay contacts (only with conventional control)

Display and operating elements


(2) LED display green

Off: No supply or wiring error Illuminated: Operation Flickering: Internal communication valve (valve / sensor) (3) Push-button and LED display yellow Illuminated: Adaptation procedure active Press button: Triggers angle of rotation adaptation, followed by standard mode (4) Gear disengagement button Press button: Gear disengages, motor stops, manual override possible Release button: Gear engages, followed by standard mode

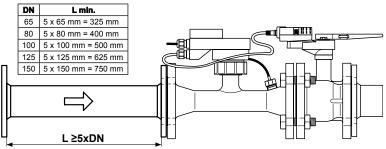
Installation notes

Recommended installation positions

The ball valve can be installed upright to horizontal. The ball valve may not be installed in a hanging position, i.e. with the stem pointing downwards.

pressure to ambient pressure level).

Installation position in return Water quality requirements

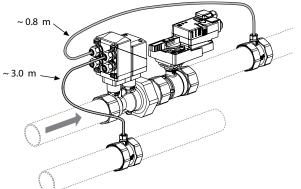

Installation in the return is recommended. The water quality requirements specified in VDI 2035 must be adhered to. Belimo valves are regulating devices. In order for these control tasks to be able to be carried out in the long run as well, they are to be kept free of solid particles (e.g. welding beads during installation work). The installation of correspondingly sufficient dirt catchers is recommended. Maintenance Ball valves, rotary actuators and sensors are maintenance-free. Before any kind of service work is carried out on the actuator, it is essential to isolate the rotary actuator from the power supply (by disconnecting the electrical cable). Any pumps in the part of the piping system concerned must also be switched off and the appropriate

slide valves closed (allow everything to cool down first if necessary and reduce the system

V3.2 03.2015 Subject to modification

Installation notes	
Maintenance	The system must not be returned to service until the ball valve and the rotary actuator have been properly reassembled in accordance with the instructions and the pipelines have been refilled in the proper manner.
Flow direction	The direction of flow, specified by an arrow on the housing, is to be complied with, since otherwise the flow rate will be measured incorrectly.
Earthing	Above DN65, it is imperative that the measuring pipe be correctly earthed in order to ensure that the volumetric flow sensor does not make any unnecessary incorrect measurements.
Inlet section	<image/> <text></text>
	DN L min.

Installation of immersion sleeve and temperature sensor

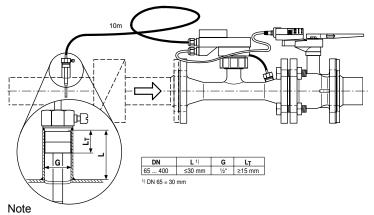

DN15-DN50

The valve is equipped with two fully-wired temperature sensors.

• T2: This sensor is installed on site near the valve unit.

• T1: This sensor is mounted at the installation site ahead of the consumer (valve in the return line) or after the consumer (valve in the supply line).

Two T-pieces for installation of the temperature sensors in the pipelines are included in the shipment.


Installation notes

Installation of immersion sleeve and temperature sensor

DN65-DN150

- The valve is equipped with two temperature sensors:
- T2: One sensor is already mounted in the valve unit.

• T1: The second sensor must be mounted at the installation site ahead of the consumer (valve in the return line; recommended) or after the consumer (valve in the supply line). The immersion sleeve required is supplied with the valve unit. The temperature sensor is already wired with the valve.

The cables between valve unit and temperature sensors may not be either shortened or lengthened.

General information

Valve selection

The valve is determined using the maximum flow required Vmax. No calculation of the kvs value is required. Vmax = 30 ... 100% of Vnom If no hydraulic data are available, then the same valve DN can be selected as the heat exchanger nominal diameter.

Minimum differential pressure (pressure drop) The minimum required differential pressure (pressure drop through the valve) for achieving the desired volumetric flow Vmax can be calculated with the aid of the theoretical kvs value (see type overview) and the below-mentioned formula. The calculated value is dependent on the required maximum volumetric flow Vmax. Higher differential pressures are compensated for automatically by the valve.

Formula

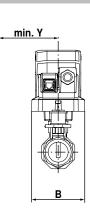
$$\Delta p_{min} = 100 \text{ x} \left(\frac{\dot{V}_{max}}{k_{vs \text{ theor.}}}\right)^2 \qquad \left[\begin{array}{c} \Delta p_{min} \colon \text{kPa} \\ \dot{V}_{max} \colon m^3/h \\ k_{vs \text{ theor.}} \colon m^3/h \end{array}\right]$$

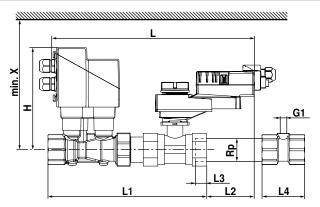
Example (DN25 with the desired maximum flow rate = 50% Vnom)

EV025R+BAC kvs theor. = 8.6 m³/h Vnom = 69 l/min 50% * 69 l/min = 34.5 l/min = 2.07 m³/h

$$\Delta p_{min} = 100 \text{ x} \left(\frac{\dot{V}_{max}}{k_{vs \text{ theor.}}}\right)^2 = 100 \text{ x} = \left(\frac{2.07 \text{ m}^{3}/\text{h}}{8.6 \text{ m}^{3}/\text{h}}\right)^2 \quad 6 \text{ kPa}$$

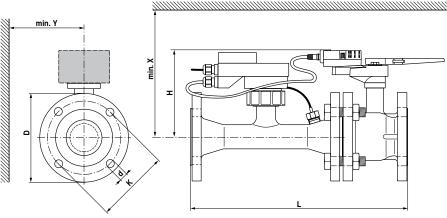
Example (DN100 with the desired maximum flow rate = 50% Vnom)


P6100W2000EV-BAC kvs theor. = 100 m³/h Vnom = 1200 l/min 50% * 1200 l/min = 600 l/min = 36 m³/h


$$\Delta p_{min} = 100 \text{ x} \left(\frac{\dot{V}_{max}}{k_{vs \text{ theor.}}}\right)^2 = 100 \text{ x} = \left(\frac{36 \text{ m}^3/\text{h}}{100 \text{ m}^3/\text{h}}\right)^2 \quad 13 \text{ kPa}$$

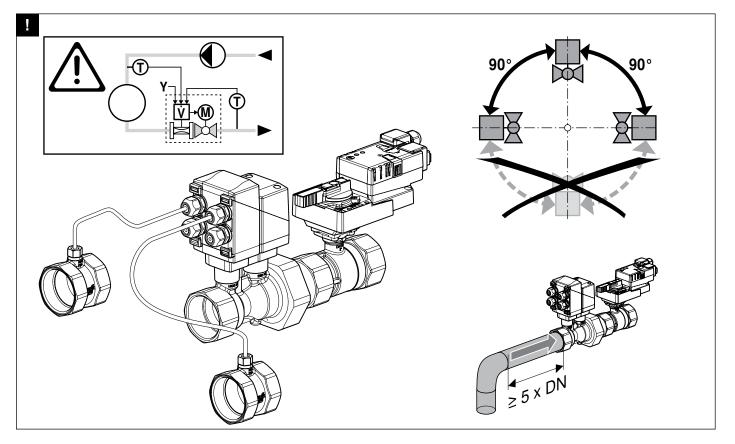
Dimensions [mm] / weight

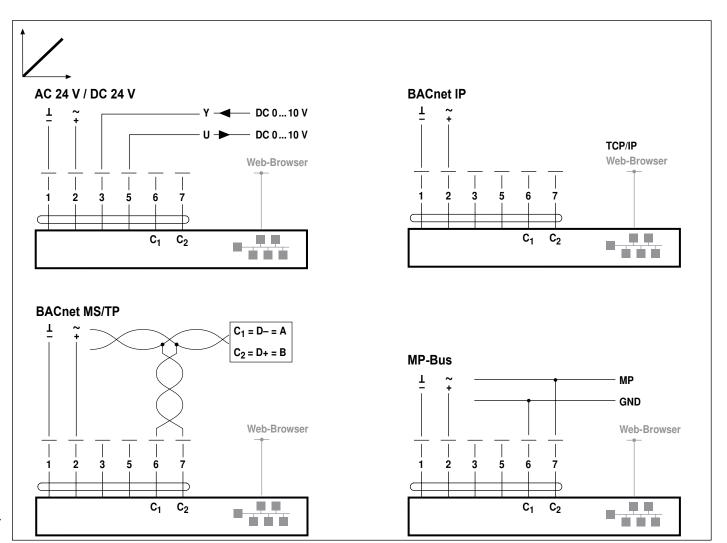
Dimensional drawings



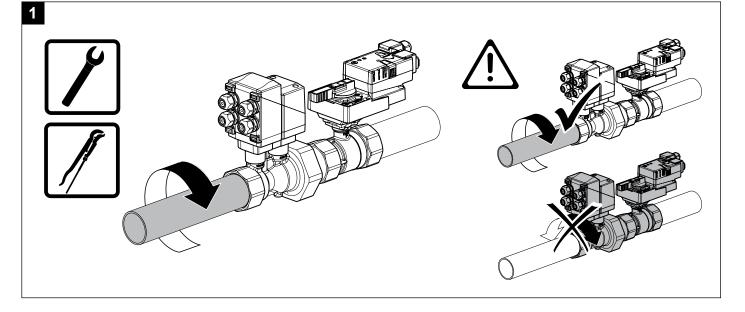
Туре	DN [mm]	Rp ["]	L [mm]	L1 [mm]	L2 [mm]	L3 [mm]	B [mm]	H [mm]	G1	L4 [mm]	X [mm]	Y [mm]	Weight approx. [kg]
EV015R+BAC	15	1/2	278	191	81	13	75	160	G1/4"	53	230	77	2.2
EV020R+BAC	20	3/4	285	203	75	14	75	162	G1/4"	57	232	77	2.5
EV025R+BAC	25	1	296	231	71	16	75	165	G1/4"	65	235	77	2.9
EV032R+BAC	32	1 1/4	324	254	68	19	75	168	G1/4"	71	238	77	3.8
EV040R+BAC	40	1 1/2	334	274	65	19	75	172	G1/4"	71	242	77	4.5
EV050R+BAC	50	2	341	284	69	22	75	177	G1/4"	80	247	77	6.0
EV050R+BAC-N	50	2	341	284	69	22	75	177	G1/4"	80	247	77	6.0

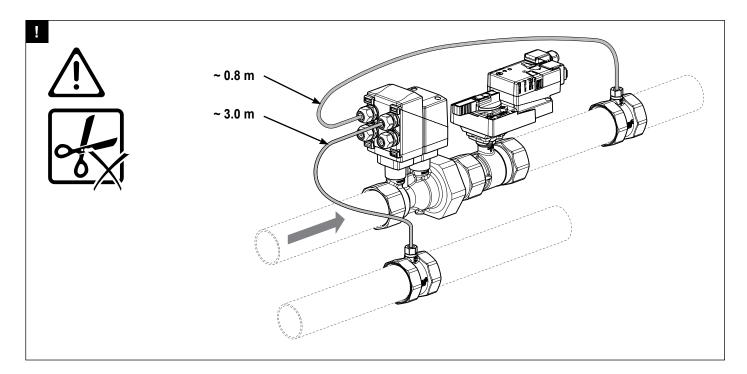
Dimensions [mm] / weight

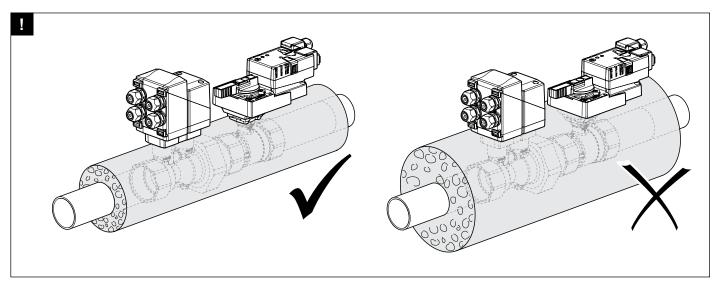

Dimensional drawings

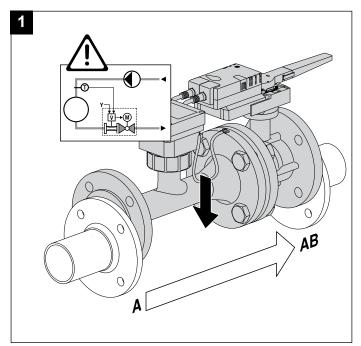


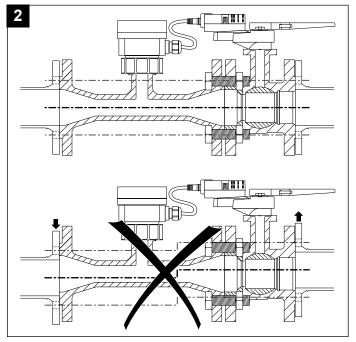
If Y <180 mm, then the extension of the hand crank must be dismantled as necessary.

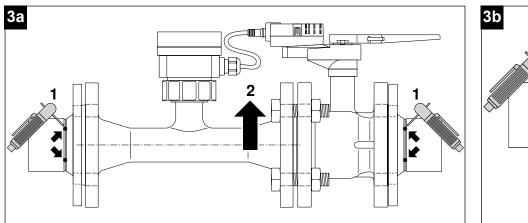

Туре	DN [mm]	L [mm]	H [mm]	D [mm]	d [mm]	K [mm]	X [mm]	Y [mm]	Weight approx. [kg]
P6065W800EV-BAC	65	454	200	185	4 x 19	145	220	150	23.6
P6080W1100EV-BAC	80	499	200	200	8 x 19	160	220	160	28.7
P6100W2000EV-BAC	100	582	220	229	8 x 19	180	240	175	41.6
P6125W3100EV-BAC	125	640	240	252	8 x 19	210	260	190	54.7
P6150W4500EV-BAC	150	767	240	282	8 x 23	240	260	200	70.0
P6065W806EV-BAC	65	454	200	185	4 x 19	145	220	150	23.6
P6080W1106EV-BAC	80	499	200	200	8 x 19	160	220	160	28.7
P6100W2006EV-BAC	100	582	220	229	8 x 19	180	240	175	41.6
P6125W3106EV-BAC	125	640	240	252	8 x 19	210	260	190	54.7
P6150W4506EV-BAC	150	767	240	282	8 x 23	240	260	200	70.0

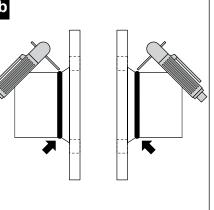


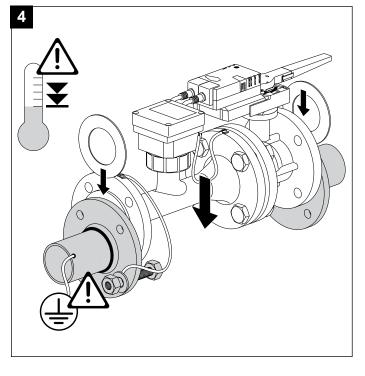


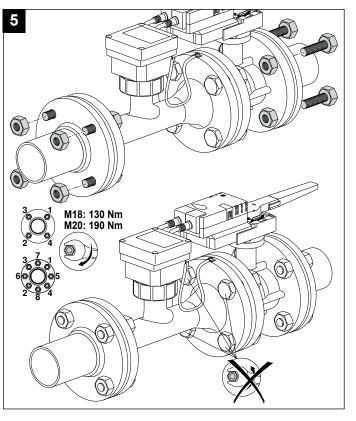


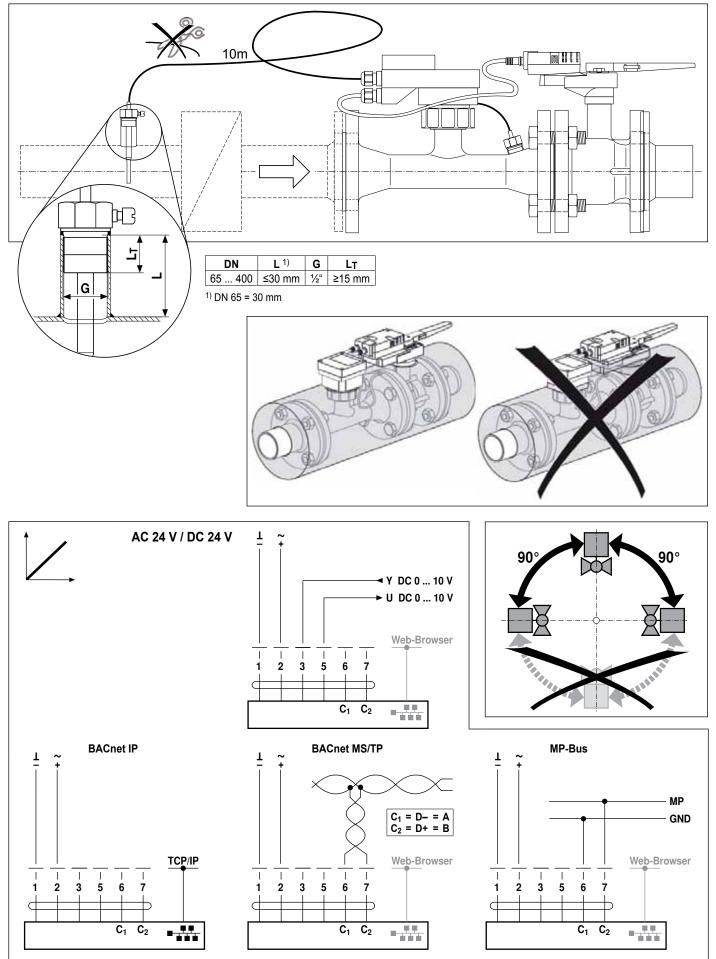


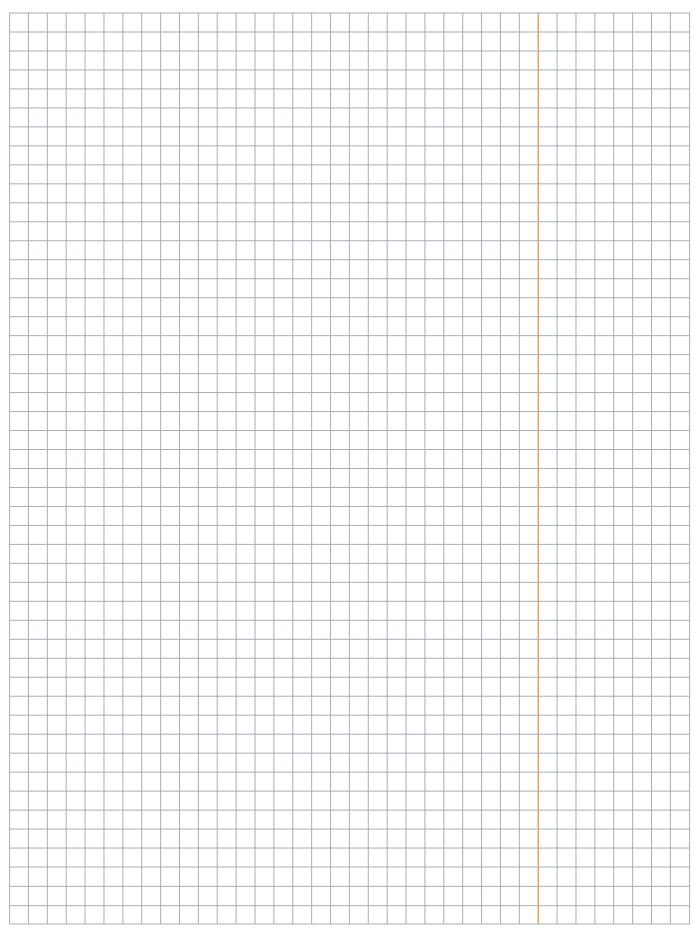


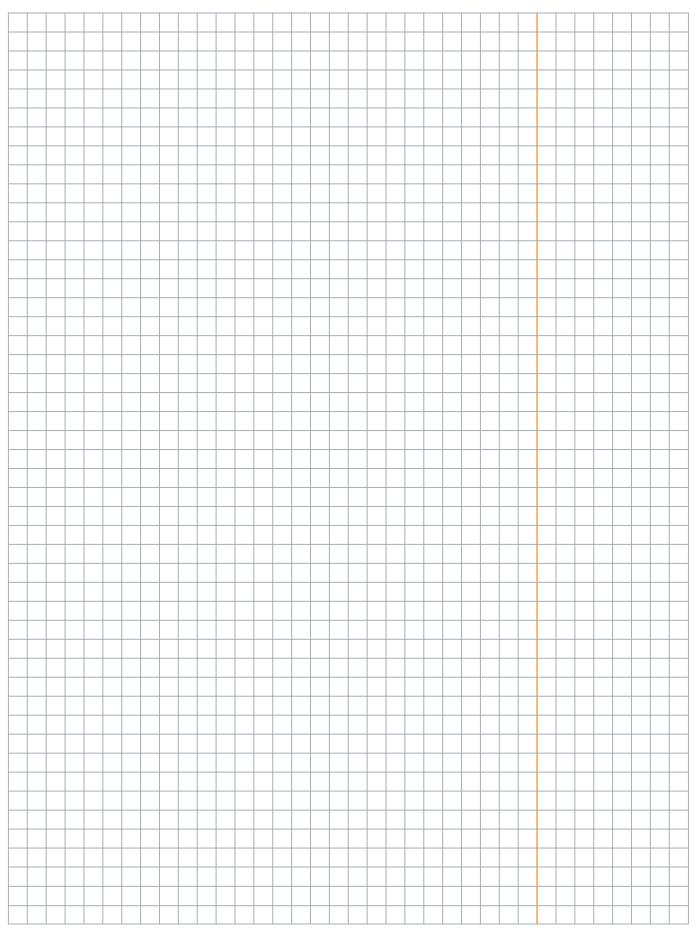



P6..W..EV-BAC Mounting instructions






P6..W..EV-BAC Mounting instructions


V3.2 03.2015 Subject to modification

ASIA PACIFIC HEADQUARTERS

Belimo Actuators Ltd. Room 1601-6, 16/F, New Commerce Centre 19 On Sum Street, Shatin, N.T., Hong Kong Tel: +852 2687 1716 Fax: +852 2687 1795 E-mail: info.asiapacific@belimo.ch

Belimo AUSTRALIA

Melbourne Office: Belimo Actuators Pty. Ltd. 12 Enterprise Court Mulgrave Business Park Mulgrave, VIC 3170, Australia Tel: +61-(0)3-8585 7800 Fax: +61-(0)3-8585 7811 E-mail: info.australia@belimo.ch

Sydney Office:

Belimo Actuators Pty. Ltd. Suite 2.20, 32 Delhi Road North Ryde, NSW 2113, Australia Tel: +61 (0)2 9805 1777 Fax: +61 (0)2 9805 1722 E-mail: info.australia@belimo.ch

Belimo CHINA

Shanghai Office: Belimo Actuators (Shanghai) Trading Ltd. 479 Chun Dong Road, Building C-2 Xin Zhuang Industry Park Shanghai 201108, P.R. China Tel: +86 21 5483 2929 Fax: +86 21 5483 2930 E-mail: info.shanghai@belimo.ch

Beijing Office:

Belimo Actuators Ltd. Unit 1528-1530, 15F, Tower A, Jiatai International Mansion, No. 41, Middle East Fourth Ring Road, Chaoyang District, Beijing,100025, P.R. China Tel: +86 10 6462 1382/1386 Fax: +86 10 6462 1383 E-mail: info.beijing@belimo.ch

Chongqing Office:

Belimo Actuators Ltd. Room 4, 9th floor, Unit 7, Luoma Jiari Gardan No. 36, Qing Ling Road, Nan'an District Chongqing 400060, P.R. China Tel: +86 23 6275 3155 Fax: +86 23 6280 33 80 *519 E-mail: info.chongqing@belimo.ch

Guangzhou Office:

Belimo Actuators Ltd. Room 5217-5218, China International Centre, Tower B, 33 Zhong Shan San Road, Yuexiu District, Guangzhou 510055, P.R. China Tel: +86 20 3435 1860 Fax: +86 20 3435 1870 E-mail: info.guangzhou@belimo.ch

Belimo HONG KONG

Hong Kong Office: Belimo Actuators Ltd. Room 1601-6, 16/F, New Commerce Centre 19 On Sum Street, Shatin, N.T., Hong Kong Tel: +852 2687 1716 Fax: +852 2687 1795 E-mail: info.hongkong@belimo.ch

Indonesia Office:

Belimo Actuators Ltd. Graha Kencana Building 8th Floor Block B Jl. Raya Perjuangan 88 Kebon Jeruk - Jakarta Barat 11530, Indonesia Tel: +62 21 5367 8278 Fax: +62 21 5366 0688 E-mail: info.indonesia@belimo.ch Japan Office: Belimo Actuators Ltd. 2nd Floor, Yamaki Building III 3-1-5 Azumabashi, Sumida-ku Tokyo 130-0001 Japan Tel: +81 3 6823 6961 Fax: +81 3 3626 3911 E-mail: info.japan@belimo.ch

Malaysia Office:

Belimo Actuators Ltd S-13-12, First Subang, Jalan SS15/4G, 47500 Subang Jaya Selangor, Malaysia Tel: +03-56125833 Fax: +03-56125233 E-mail: info.malaysia@belimo.ch

Singapore Office

Belimo Actuators Ltd. 1 Tannery Road #08-04 One Tannery, Singapore 347719 Tel: +65 6842 1626 Fax: +65 6842 1630 E-mail: info.singapore@belimo.ch

Taiwan Office:

Belimo Actuators Ltd. 7F-2, No.343, Jhonghe Rd., Yonghe District, New Taipei City 234, Taiwan Tel: +886 2 2922 8805 Fax: +886 2 2922 8806 E-mail: info.taiwan@belimo.ch

Thailand Office:

Belimo Actuators Ltd. 90/2 Pensiri Place, Soi Phaholyothin 32 Phaholyothin Road, Chandrakasem, Jatujak Bangkok 10900, Thailand Tel: +662 9415582-3 Fax: +662 9415584 E-mail: info.thailand@belimo.ch

Belimo INDIA

Mumbai Office: Belimo Actuators India Pvt. Ltd. 23/ ABCD, Govt. Industrial Estate Charkop, Kandivali West Mumbai 400067, India Tel: +91 22 4025 4800 Fax: +91 22 4025 4899 E-mail: info.india@belimo.ch

Bangalore office:

Belimo Actuators India Pvt. Ltd. Sreerama Complex, No. 13, 2nd Floor, 5th Cross Road 6th Block, Koramangala Bangalore – 560097, India Tel: +91-80-40906311 Fax: +91-80-40906288 E-mail: info.india@belimo.ch

New Delhi Office:

Belimo Actuators India Pvt. Ltd. Flat No. 515, DLF Tower – B Jasola Distt. Centre, Jasola New Delhi 110025, India Tel: +91 11 41078501 Fax: +91 11 41078508 E-mail: info.india@belimo.ch

Chennai Office:

Belimo Actuators India Pvt. Ltd. Flat no.3B, Urmilla House #15, ARK Colony, Eldams Road Chennai-600 018, India Tel: +91 44 24355154/5153 E-mail: info.india@belimo.ch

DAMPER

Belimo regional head offices

EU BELIMO Automation AG Brunnenbachstrasse 1 8340 Hinwil, Switzerland Tel: +41 43 843 61 11 Fax: +41 43 843 62 68 E-mail: info@belimo.ch

- AP Belimo Actuators Ltd. Room 1601-6, 16/F, New Commerce Centre 19 On Sum Street, Shatin, N.T., Hong Kong Tel: +852 2687 1716 Fax: +852 2687 1795 E-mail: info.asiapacific@belimo.ch
- US BELIMO Aircontrol (USA), Inc. 33 Turner Road Danbury, CT 06810 USA Tel: +800 543-9038 / 203 791-9915 Fax: +800 228-8283 / 203 791-9919

Or contact your nearest Sales Representative

www.belimo.com

5 year warranty

Innovation, Quality

and Consultancy:

A partnership for

motorising HVAC

actuators

A complete range of products from one source

Tested quality

Short delivery times

Comprehensive support

93010-00169

On site around the globe

